The convective Stefan problem: shaping under natural convection
نویسندگان
چکیده
Abstract
منابع مشابه
Solving The Stefan Problem with Kinetics
We introduce and discuss the Homotopy perturbation method, the Adomian decomposition method and the variational iteration method for solving the stefan problem with kinetics. Then, we give an example of the stefan problem with kinetics and solve it by these methods.
متن کاملNonlinear Two-Phase Stefan Problem
In this paper we consider a nonlinear two-phase Stefan problem in one-dimensional space. The problem is mapped into a nonlinear Volterra integral equation for the free boundary.
متن کاملThe Classical One-phase Stefan Problem with Temperature-dependent Thermal Conductivity and a Convective Term
We study a one-phase Stefan problem for a semi-infinite material with temperaturedependent thermal conductivity and a convective term with a constant temperature boundary condition or a heat flux boundary condition of the type −q0/ √ t (q0 > 0) at the fixed face x = 0. We obtain in both cases sufficient conditions for data in order to have a parametric representation of the solution of the simi...
متن کاملTHE STEFAN PROBLEM WITH KINETIC FUNCTIONS AT THE FREE BOUNDARY
This paper considers a class of one-dimensional solidification problem in which kinetic undercooling is incorporated into the temperature condition at the interface. A model problem with nonlinear kinetic law is considered. The main result is an existence theorem. The mathematical effects of the kinetic term are discussed
متن کاملA Stefan problem for a non-classical heat equation with a convective condition
Keywords: Stefan problem Non-classical heat equation Free boundary problem Similarity solution Nonlinear heat sources Volterra integral equation a b s t r a c t We prove the existence and uniqueness, local in time, of the solution of a one-phase Stefan problem for a non-classical heat equation for a semi-infinite material with a convective boundary condition at the fixed face x = 0. Here the he...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Fluid Mechanics
سال: 2021
ISSN: ['0022-1120', '1469-7645']
DOI: https://doi.org/10.1017/jfm.2021.86